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for the no noise scenario. It is also observed that there is a
loss in the information rate for an EH communication system
when the ISI becomes more severe, which is similar to the
behavior observed for communication systems without the EH
constraints.
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Fig. 3: Comparison of information rates with β = 0.4, α = 0.5 and
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As a second example, in Fig. 4, we provide the achievable
rates with two different ISI channels (length two and length
four) for different battery capacities (for α = 0.5). We observe
that there is a significant increase in the achievable rates
when the battery capacity is increased from 1 to 2, then to
3. However, the gains become marginal with larger B values.
This behavior is due to the use of on-off signaling; with higher
order modulations, the amount of increase will be significant
until we reach a larger battery capacity, becoming marginal
at higher B values. It is particularly noteworthy that even a
small battery improves the system performance significantly
(comparing the results with those in Fig. 3).
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Solid lines: length-2 channel

Dashed lines: length-4 channel
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Fig. 4: Information rates of 2 and 4-tap channels in the previous
example for different battery capacities.

Finally, in Fig. 5, we illustrate the achievable rates for three
different energy arrival probabilities α = 0.2,0.5 and 0.8. We
consider two different battery sizes: B = 1 and B = 6, and
two different channels: no ISI and length-four ISI with equal
gain taps. The optimal ones’ densities for B = 1 are 0.18,0.3

and 0.4, and for B = 6 are 0.19,0.4 and 0.5, corresponding to
α = 0.2,0.5 and 0.8, respectively. The results clearly quantify

the role of the energy arrival rates as well as the battery sizes
for EH communications over ISI channels.
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Fig. 5: Information rates for three different energy arrival rates.

V. CONCLUSIONS

We have provided a way of computing achievable rates of
EH communication systems with i.i.d. inputs drawn from a
finite alphabet over ISI channels by extending the previously
known information rate estimation approaches for the case
with no energy constraints. This tool allows us to quantify
the effects of energy arrival rates, battery capacities, specific
ISI patterns and noise levels on the reliable transmission rates.
Furthermore, the results indicate the importance of the input
distribution optimization, and that even a small battery size
helps improve the rates considerably.
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